Skip to contents

This function is the opposite of predictions_to_matrix(). It converts a wide matrix into a long data frame. It is mostly used within plotting functions.

Usage

matrix_to_predictions(contact_matrix)

Arguments

contact_matrix

square matrix with age group to and from information in the row and column names.

Value

data.frame with columns age_group_to, age_group_from, and contacts.

Examples

fairfield <- abs_age_lga("Fairfield (C)")

# We can convert the predictions into a matrix

fairfield_school_contacts <- predict_contacts(
  model = polymod_setting_models$school,
  population = fairfield,
  age_breaks = c(0, 5, 10, 15, Inf)
)

fairfield_school_contacts
#> # A tibble: 16 × 3
#>    age_group_from age_group_to contacts
#>    <fct>          <fct>           <dbl>
#>  1 [0,5)          [0,5)          1.29  
#>  2 [0,5)          [5,10)         0.360 
#>  3 [0,5)          [10,15)        0.0398
#>  4 [0,5)          [15,Inf)       0.646 
#>  5 [5,10)         [0,5)          0.342 
#>  6 [5,10)         [5,10)         4.28  
#>  7 [5,10)         [10,15)        0.407 
#>  8 [5,10)         [15,Inf)       1.22  
#>  9 [10,15)        [0,5)          0.0358
#> 10 [10,15)        [5,10)         0.389 
#> 11 [10,15)        [10,15)        6.89  
#> 12 [10,15)        [15,Inf)       1.78  
#> 13 [15,Inf)       [0,5)          0.0460
#> 14 [15,Inf)       [5,10)         0.0916
#> 15 [15,Inf)       [10,15)        0.142 
#> 16 [15,Inf)       [15,Inf)       1.03  

fairfield_school_mat <- predictions_to_matrix(fairfield_school_contacts)

fairfield_school_mat
#>               [0,5)    [5,10)    [10,15)   [15,Inf)
#> [0,5)    1.29282238 0.3420768 0.03576273 0.04598657
#> [5,10)   0.35984494 4.2783940 0.38874296 0.09155252
#> [10,15)  0.03981607 0.4065530 6.89007154 0.14173611
#> [15,Inf) 0.64590388 1.2160564 1.78393541 1.03380519

matrix_to_predictions(fairfield_school_mat)
#> # A tibble: 16 × 3
#>    age_group_to age_group_from contacts
#>    <fct>        <fct>             <dbl>
#>  1 [0,5)        [0,5)            1.29  
#>  2 [0,5)        [5,10)           0.342 
#>  3 [0,5)        [10,15)          0.0358
#>  4 [0,5)        [15,Inf)         0.0460
#>  5 [5,10)       [0,5)            0.360 
#>  6 [5,10)       [5,10)           4.28  
#>  7 [5,10)       [10,15)          0.389 
#>  8 [5,10)       [15,Inf)         0.0916
#>  9 [10,15)      [0,5)            0.0398
#> 10 [10,15)      [5,10)           0.407 
#> 11 [10,15)      [10,15)          6.89  
#> 12 [10,15)      [15,Inf)         0.142 
#> 13 [15,Inf)     [0,5)            0.646 
#> 14 [15,Inf)     [5,10)           1.22  
#> 15 [15,Inf)     [10,15)          1.78  
#> 16 [15,Inf)     [15,Inf)         1.03